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Abstract: Today, chitosan is probably considered as the biofunctional polysaccharide with the 17
greatest growth and potential for applications in various fields. The progress in chitin chemistry 18
and the need to replace additives and non-natural polymers with functional natural-based polymers 19
have pointed the way towards chitosan and its derivatives. Thanks to specific reactive groups and 20
easy chemical modifications, a wide range of physico-chemical and biological properties can be 21
obtained from this ubiquitous polysaccharide composed of -(1,4)-2-acetamido-2-deoxy-D-glucose 22
repeating units. This review provides insights into multiple native/modified chitosans but also 23
oligo-chitosans associated to their functional properties. Chemical and/or enzymatic strategies have 24
been detailed to understand the methods of obtaining. Regarding the literature over the last 20 25
years, bioadhesive applications, antimicrobial activities, adsorption and chelation in wine industry 26
but also developments in medical fields or biodegradability have been addressed. 27
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29

1. Introduction30
Chitosan is a copolymer of glucosamine and N-acetyl glucosamine connecting by β-(1-4) 31

linkages. It is derived from chitin which is among the most abundant biopolymers on earth. The word 32
“chitin” is derived from Greek language meaning “envelope” or “tunic”. Chitin was the first 33
polysaccharide identified by the French scientist Braconnot in 1811 and was fully described in 1884 34
as a natural poly-β-(1-4)-N-acetyl-D-glucosamine [1,2]. The unique chemical structures of chitin and 35
chitosan led some authors to call them aminopolysaccharides [3]. Chitin is widely abundant as 36
ordered crystalline microfibrils in several kinds of organisms such as yeast and fungi (cell walls), 37
crustaceans shells or insects cuticules and also produced by some green microalgae [4]. Two main 38
polymeric forms of chitin have been described in literature, namely α- and β-chitins which are 39
arranged as monoclinic and orthorhombic cells, respectively [5]. An allomorph γ-chitin is a 40
combination of these two forms [5]. α-chitin (from yeast cell walls, exoskeleton of crustaceans and 41
arthropod cuticle) and β-chitin (from squid pen) correspond respectively to anti-parallel and parallel 42
arrangements of polymer chains. The term “chitosan” (Kite-O-San) was firstly written by Hoppe-43
Seiler in 1894, to design deacetylated chitin [6]. Indeed, chitin is not soluble in water or other common 44
organic solvents but can be converted in chitosan after hot alkaline deacetylation in solid state [2]. 45
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The degree of deacetylation (DD) which is the percentage of D-glucosamine units with respect to the 46
total number of monomers (glucosamine and N-acetyl glucosamine) defines the frontier between 47
chitin and chitosan. Conventionally, the DD value of chitosan is usually higher than 50 %. The 48
resulting chitosan, which is a polycationic polysaccharide, is soluble in dilute acidic media (2<pH<6) 49
contrary to chitin [7]. In industrial processing, chitosan is mainly extracted from crab, shrimp shells, 50
squid pens and crustaceans by acidic treatment to eliminate the calcium carbonates followed by 51
alkaline deproteinization [5]. The demineralized and deproteinized chitin is then submitted to a 52
second alkaline treatment at high temperature before an optional decolorization step using hydrogen 53
peroxide, sodium hypochlorite or acetone [5]. All these acidic and alkali treatments are extremely 54
hazardous for the environment and not sustainable. Enzymatic deacetylation is often considered as 55
an ecofriendly alternative to alkaline deacetylation but not really developed at the industrial scale at 56
this time [6]. New commercial sources of chitosans from fungi and insects have appeared recently on 57
the market to valorize some by-products (mushroom wastes or cuticules of insects from new protein 58
production chains). They are based on more green processes compared with those used by traditional 59
chitosan production chains. The physico-chemical properties of chitosan depend on its molecular 60
weight (from approximately 10 to 1000 kDa), DD (in the range of 50–95 %), and sequence of the 61
acetamido and amino groups. It has been used in large range of applications due to its unique 62
physicochemical properties but also its low toxicity, biodegradability, biocompatibility, high 63
adsorption capacity and microbe resistance [4,8,9]. Indeed, the different functional groups of this 64
polycationic polysaccharide can be modified with a wide diversity of ligands. Among them, the 65
amino group (-NH2) functionality is available for numerous chemical reactions including reactions 66
with aldehydes and ketones (Schiff’s base), chelation of metals, alkylation, sulfonation, 67
carboxymethylation, grafting acetylation, quaternization, etc. [10-12]. The numerous hydroxyl 68
groups (-OH) are also, as for all polysaccharides, available for chemical modifications such as 69
sulfonation, carboxymethylation, phosphorylation or hydroxyethylation [10-14]. All these amine and 70
hydroxyl groups along the chitosan chain can be cross-linked using cross-linking agents to give 71
‘chemical’ hydrogels. They can also interact each other due to ionic and hydrophobic interactions, 72
molecular entanglements or hydrogel bonds to generate physical hydrogels [9]. Moreover, 73
macromolecules of chitosan can produce self-assembled structures based on hydrogen-bond 74
networks formation in aqueous solutions leading to fibers. Conformational variations of these 75
chitosan assemblies have been reported to depend on local environment changes around chitosan 76
(e.g., pH, temperature, types of salt, and types of acids). All these reactions offer to chitosan a great 77
potential as biosourced materials, biomaterials drug/enzyme delivery vehicles, tissue engineering 78
scaffold, adhesive, texturing agents, support for enzyme immobilization, bioactive agent and other. 79
This review focuses on the fundamental uses of all forms of chitosans (polymer, oligomer, native and 80
chemically modified) in a large variety of applications.  81

2. Chitosan in few words 82

2.1. Structure extraction and purification 83
Although chitin and chitosan are known since the nineteenth century and the work of Henri 84

Braconnot (1811) [15], research on these compounds really started around 1930 and was intensified 85
after 1970. The major obstacle to their use lied in the difficulty to solubilize them. But research was 86
encouraged by the fact that resources were abundant. Indeed, chitin is the most abundant 87
polysaccharide on earth after cellulose [16-18]. It plays an essential structural role in the cell wall of 88
fungi and yeasts, and in cuticles of arthropods and insects. Chitin is a natural linear cationic 89
polysaccharide consisting of β-(1,4) linked N-acetyl-D-glucosamine (GlcNac) (Figure 1). Chitosan is 90
obtained by deacetylation of chitin with concentrated NaOH solution, and consists of a 91
heteropolysaccharide of β-1,4 linked D-glucosamine and N-acetyl- D-glucosamine (Figure 1). Chitin 92
and chitosan are characterized by the degree of acetamidation, denoted DA, and expressed as a 93
percentage of acetamide groups present: it is greater than 50% in chitin and less than 50% in chitosan 94
[18,19].  95
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96
Figure 1. Chemical structure of chitin, and chitosan. 97

In the case of chitosan, it is often preferred to mention the rate (%) of deacetylation, called DD, which 98
corresponds to the relative amount of acetyl groups removed from chitin during the preparation of 99
chitosan. Another definition considers that it is the solubility of the material in a solution of acetic 100
acid, which defines the polymer as chitin or chitosan. In insects, fungi, diatoms or marine animals, 101
chitin is synthesized by chitin synthase (EC. 2.4.1.16) [20]. In these organisms, chitin assemblies in 102
three distinct polymorphic forms named α, β and γ (parallel, antiparallels or mixture of both) [1,21]. 103
The forms of the chains is found to depend on the orignin, and α-chitin is the most abundant form. 104
Chitin deacetylase (EC 3.5.1.41) partially removes acetyl substituents and defines de acetylation 105
degree of the final chitin [22]. Chitosan is rarely found in nature contrarily to chitin. Extraction of 106
chitin (Figure 2) from fishery wastes (carapace of crustaceans and shellfish) requires strong chemical 107
treatments such as deproteinisation with hot alkali (NaOH 1N, at 60-100 °C for several hours) 108
demineralization with acid (HCl 0.3-2 N at about 100 °C for 1 or two days) to eliminate calcium 109
carbonate, and discoloration [17].  110

111
Figure 2. General steps for chitin and chitosan production. 112

The extraction process of the chitin-glucan from fungal biomass is more recent (Figure 2) [23,24]. The 113
extraction method comprises hydrolysis steps, to separate the chitin from the rest of the mycelium 114
and the lipid elimination by washing and drying. Then, chitosan is generally produced by partial 115
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deacetylation of chitin in a concentrated sodium hydroxide solution, for several hours at 110-115 °C, 116
under inert atmosphere (N2), in the presence of a reducing agent (NaBH4). Deacetylation reaction is 117
rarely complete, to avoid a sharp reduction in the molecular weight of the polymer. The use of high 118
temperatures generally improves the reaction rates and yields [25]. Ultrasound and microwave 119
technologies were also proposed to improve the extraction and deacetylation steps [26-31]. 120
Furthermore, biological treatments offer alternative to such hard chemical reactions: lactic acid 121
bacteria and bacterial protease can be used to remove proteins and deacetylation can also be 122
performed with enzymes [32,33]. This produces higher quality products (better control of MW and 123
DA) but requires longer processes. The product is then dried and re-dissolved in an organic acid 124
solution, in order to purify it. The chitosan obtained is in the form of an amorphous solid. It generally 125
has a DD greater than 70 % (between 70 and 80 % in general), with a MW which may reach 3x106 Da, 126
but generally comprised between 100 and 1000 kDa, with small amounts of smaller molecules (10-50 127
kDa). Chitosan preparation mean MW and polydispersity vary a lot from one preparation to the 128
other. Chitin, chitosan and glucan-chitosan can be hydrolyzed by enzymes (chitinases, chitosanases, 129
glucanases) to prepare specific medium and low molecular weight (<50 kDa) chitosan families [1,17]. 130
Chitosan is a weak base, with a pKa of 6.3-6.7. It is partially soluble in acidic aqueous solution when 131
pH<pKa, and the solubility increases at pH <5.5. The DD parameter affects (i) the solubility of acidic 132
chitosan, due to the protonation of amine groups, (ii) the flexibility of the polysaccharide chains, (iii) 133
the conformation of the polymer and (iv) the viscosity of the solutions. The molecular chain length or 134
mass is also an important property that can be expressed in weight (MW) or number (Mn). Mn affects 135
the solubility of the chitosan and the viscosity of solutions [1]. The chitosan characteristics (in terms 136
of DD, Mn, polydispersity and crystallinity) strongly depend on the extraction method and the source 137
of isolation and they can vary widely from batch to batch [17,19,34]. 138

139
2.2. Global market 140

Chitosan has several uses in the industry such as cosmetics, water treatment, and agrochemicals 141
[1,4]. Chitosan application is mainly focused at waste water treatment, due to its bio sorbent 142
properties, in order to remove pollutants such as heavy minerals, oils, and phosphorous which are 143
responsible for the deterioration of the water quality. Due to industrialisation and rising of global 144
population, global chitosan market has increased lately, mainly in Asia and especially in Japan, 145
representing 35 % of the global market in 2013. Besides the main waste water treatment application, 146
chitosan is expected to expend its use to the cosmetic industry because of it’s skin moisturizing 147
properties. Chitosan is also more and more thought off for hair care treatments or dental care as well 148
as in agriculture for stimulating plant growth. The global Chitosan market is valued at 1,205 million 149
US$ in 2015 and would reach 2,550 million US$ by the end of 2022 with a increasing of 10.7 % between 150
2016 and 2022. Ten to the power of ten tons of chitin are produced anually [1-4,35,36].  151

3. Chitosan derivatives and functionalization152
Due to their exceptional properties and biological activities chitosan and its derivatives has a 153

growing success as judged by the number the publications mentioning them and their large 154
application potential in foods, environmental, material, cosmetic, pharmaceutical and biomedical. 155
However its applications are strongly limited by the poorly soluble behavior in many solvents and 156
water of chitosan. To bypass this problem, chemical modifications and depolymerization of chitosan 157
are proposed. 158

159
3.1. Chitosan chemistry 160

Chemical modifications of chitosan are well documented in recent publications in last few years 161
[4]. Due to the presence of reactive amino (NH2) and hydroxyl (-OH) groups this polysaccharide is 162
very easily modifiable. Those modifications aim to enhance biological and chemical properties of 163
chitosan and modify its solubility in function of the desired applications. In this paragraph, we will 164
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underline the principal modifications of chitosan described in literature that are: quaternization, N-165
alkyl modifications, N-acyl modifications and C-6 oxidation. 166

3.1.1. Quaternized chitosan derivatives 167
Many publications [37,38] have shown that it is possible to modify the positive (NH3+) charge of 168

chitosan to make it soluble in a large range of pH but also in neutral or slightly alkaline medium. 169
Quaternization is an example of enhanced solubility of chitosan in water. Actually, chitosan positive 170
charge is present in only at pH under 6.5 but when chitosan is quaternized this one is permanently 171
positively charged at pH above 6.5. Quaternization reaction occurred between alkyl iodide and 172
chitosan under basic conditions media. N,N,N-trimethylchitosan chloride (TMC) is the best known 173
quaternized chitosan and has it great spectrum of applications [4]. As shown in Figure 3, TMC is 174
obtained after two consecutive reactions, on the one hand by the reaction between methyl iodide 175
CH3I and chitosan with N-methyl-2-pyrrolidinone (NMP) as solvent in alkaline conditions (NaOH) 176
and on the other hand by the replacement of iodide ion with chloride one with the intermediate of 177
anionic exchange resin. Various types of quaternized chitosan can easily be obtained by changing the 178
carbon length of alkyl halides. 179

3.1.2. N-alkyl chitosan derivatives 180
Production of N-alkylated chitosan is achieved by the reaction of –NH2 groups with ketones or 181

aldehydes in a binary solvent such as methanol/acetic acid to allow the solubilization of liposoluble 182
alkyl molecules and water soluble chitosan [4]. This reaction between ketones or aldehydes and 183
chitosan is a condensation with formation of Schiff-base intermediates (Figure 3).  184

185186
Figure 3. Production of chitosan derivatives by different ways: (A) Quaternization, (B) N-alkylation and (C) N-187
acylation. 188

The transformation of those intermediates into N-alkylated chitosan derivatives is due the action of 189
cyanoborohydride. Size of alkyl chain length can be modulated (generally between C3 and C12). In 190
their publication Desbrieres et al. [39] showed that it is possible to synthesize N-alkyl chitosan with 191
different chain length to be able to produce derivatives with a large rheological behavior. Some of 192
others interesting publications clearly exhibit the importance of alkyl chain length and their 193
substitution degree on chitosan on the interaction between transformed chitosan in water media 194
[40,41].   195

(i) Chloroform/Pyridin

(ii) water/acetic acid/Methanol

(A)

(B)

(C)
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3.1.3. N-acyl chitosan derivatives196
N-acyl chitosan derivatives bring hydrophobic properties to chitosan by grafting them with197

different fatty acids. The reaction consists to a specific amidation between –COOH groups from fatty 198
acids and –NH2 groups from chitosan. Chemical reagents used for N-acylation are acyl halide or acid 199
anhydride (Figure 3). This acylation is regularly performed in pyridine, chloroform/pyridine, or 200
methanol/water/acetic acid. Nevertheless, this reaction can lead to O-alkyl chitosans because of two 201
reactive –OH groups on the chitosan repeating unit. In order to avoid this O-acylation, many authors 202
advice to primary hydroxyl groups of chitosan by trityl groups and enhance the N-Acylation by the 203
creation of a chitosan chloroacyl [42]. Many types of acid anhydride have been tested to produce N-204
acyl chitosans [43-46]. 205
 3.1.4. Oxy-chitosan derivatives 206

A large number of scientific publications have explored production of water soluble chitouronic 207
acid sodium (carboxylated chitin or chitosan) with the use of TEMPO an organic catalyst for oxidation 208
of hydroxyls functions into aldehyde in NaOCl and NaBr conditions [47-50]. TEMPO is mainly 209
known for his oxidation of primary hydroxyl group in a regio-selective manner of huge number of 210
polysaccharides. Muzzareli et al. (1999) [51] have developed a region-selective oxidation method 211
using TEMPO to produce oxy-chitosan derivatives namely 6-oxychitosan. Chitouronic sodium salts 212
are mainly produced from pretreated (chemically or enzymatically) fungal or shrimp cells chitin. In 213
their work, Muzarelli et al. [47] used fungal biomass from Trichoderma and Aspergillus to produce a 214
new range of carboxylated chitosan/chitin that shown biocompatibility to human keratocytes and 215
their potential use in drug delivery applications [52]. Pierre et al. [50] in their recent work have 216
synthesized a new bioactive C6 oxy-chitosan derivative. This new derivative showed good anti-217
parasitic properties against Leishmania. Very recently, an environmentally friendly process has been 218
developed by Botelho da Silva et al. (2018) [53] for C6 oxidation of chitosan through a TEMPO/ laccase 219
Redox system in order to generate water soluble chitosan fraction (Figure 4). 220

221
222

Figure 4. Environmentally friendly oxidation of chitosan via TEMPO/laccase system (adapted from [53]). 223

3.1.5. Cross-linked chitosan derivatives 224
The crosslinking step of chitosan consists in creating a crosslinked structure through the use of 225

bridging that link the strings together and thus create a network macromolecular three-dimensional 226
more or less irreversibly crosslinked [1,2,9]. Chitosan is most often crosslinked by covalent bonds in 227
the presence of aldehyde derivatives such as for example: glyoxal, formalin or glutaraldehyde in an 228
acidic or basic medium to generate chitosan-based hydrogel [9]. As a rule, this cross-linking reaction 229
with chitosan consists in forming a Schiff base (imine) [2,4,9]. Glutaraldehyde (GTA) is the most 230
studied crosslinking agent. It is synthetic, available and inexpensive [1,9]. The reaction consists of a 231
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condensation between the aldehyde and a primary amine group from chitosan chain in the presence 232
of labile hydrogen [9,16,34]. However, the GTA is toxic and then, natural alternatives to the GTA are 233
being studied such as the use of the genipin [9], and citric acid [54,55]. As for example, Lusiana et al. 234
[54] study reported the use of citric acid as a cross-linking agent for preparation of chitosan/ PVA235
membrane. This cross-link strategy was generally investigated to produce biomaterial as236
hemodialysis membranes [55]. The cross-linking between citric acid and chitosan was expected to237
incorporate carboxylate group (COO-) to biomaterial in order to increase bioactive sites on chitosan238
membrane for transporting biomolecules (urea, creatinine, etc.). Polyvinyl alcohol (PVA) was used239
to increase the mechanical efficient and increase hydrophobicity of cross-linked chitosan membrane240
[54]. In the Figure 5 were presented the main cross-linking chitosan strategies.241

242

243
244

Figure 5. The mains cross-linking reactions using chitosan. 245
246

3.2. Oligochitosan and Low Molecular Weight (LMW) chitosan 247
High molecular weight chitosan is very difficult to use in commercial applications due to high 248

viscosity. Reducing molecular weight of chitosan is a good way to reduce viscosity and also to 249
reinforce chitosan exceptional properties by the production of chitooligosaccharides (COS) and low 250
molecular weight chitosan (LMW) described to have various biological properties. The production 251
of COS and LMW chitosans is achieved principally by three ways: physical, chemical and enzymatic 252
[56]. Table 1 resumes the different possible ways including conditions to produce efficiently LMW 253
chitosans or COS and DP or MW obtained after treatment when found in literature. The reduction of 254
molecular weight by chemical, physical or enzymatic processes has been related to efficiently 255
improve solubilization of chitosan in water or acetic acid solutions [4,56]. Depolymerization of 256
chitosan is principally effected by chemical hydrolysis and precisely acid chitosanolysis is the most 257
reported techniques to produce COS and LMW chitosans [4]. Then generally, chemical methods 258
processes include chitosanolysis with HCl [57], HNO2 [58], H2O2 [59] and potassium persulfate [60].259

260
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Table 1. Methods reported for producing LMWC or COS. 261

Type of 
method 

Depolymerization 
methods 

Conditions 
MW* 
DP** 

References 

PHYSICAL 

High Pressure 
Homogenization   

1500 bars 1% chitosan in 1% 
acetic acid  

30 kDa [70] 

Sonication 
Sonication at 35.2 W/cm², 30 

min 
140-143 

kDa 
[61] 

Gamma radiations 

2% chitosan in 2% acetic acid, 
200 KGy 

3-5 kDa [62] 

1% Chitosan, 0.1% Tween 80 
irradiation 50 kGy 

75-77 kDa [63] 

Autoclave 
1% Chitosan, 1% acetic acid, 

121°C, 60 min, 1 bar 
313 kDa [64] 

CHEMICAL 

Acid hydrolysis 

0.5 M HCl, 1% chitosan, 30 h, 
65°C 

- [57] 

2% chitosan, 1.8 M HCl reflux 
100°C, 2h 

DP<40 [72] 

0.976 % chitosan, 50 mM HCl, 
3.89 mM HNO3, 35°C, 30 min 

< 16 kDa [58] 

1% Chitosan in HCl 1.8 M, 
100°C, 2h 

DP > 6 [58] 

Free radical methods 

2% chitosan, 2% acetic acid, 
1.5% H2O2 (final) pH 3.0, 6h 

9.9 kDa [59] 

1.5% chitosan in 2% acetic acid 
solution, 1.08 g KPS, 70°C 

17.4 kDa [60] 

ENZYMATIC 

Specific enzymes 

Chitosanase from Aspergillus 
sp. 5U in 5.5 % chitosan 

solution 45-50°C, 68h 
DP<10 [66] 

Chitinase from Aeromonas 
hydrophila 

DP 1 to 5 [65] 

Nonspecific enzymes 

1% Chitosan in 100 mM 
sodium acetate pH 4 with 

1:100 Pepsin ratio, 2h 
9-13 kDa [67] 

4 % chitosan 1% acetic acid 
50°C E/S protease ratio 1:20 

DP 1 to 8 [69] 

4.5% chitosan in 0.5M acetic 
acid bicarbonate pH 5.6, 

cellulase, 50°C, 14h 
DP 3 to 8 [68] 

*Molecular Weight (MW) and *Degree of polymerization (DP). 262

Physical processes include depolymerisation with sonication [61], electromagnetic irradiation, 263
gamma irradiation [62,63] and microwave irradiation or thermal procedure [64]. Finally, enzymatic 264
processes use specific enzymes like chitinase [65] and chitosanase [66] but also non specific enzymes 265
like pepsin [67], cellulase [68], lipase, pronase, protease [69], lysozyme, papaïn, glucanase, 266
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hemicellulase and pectinase. Many studies have related that the use of non specific methods like 267
physical and enzymatic degradation of chitosan produce high COS and LMW chitosans yields. 268
However, the main problem of enzymatic depolymerisation is the enzyme cost, making it redhibitory 269
for bulk use in commercial applications and also the relative slowness of reactions whereas, chemical 270
methods have the drawbacks of using non green chemicals, their removal and the non-uniformity of 271
final products [4]. New methods for reducing molecular mass of chitosan have been found like High 272
pressure homogenization (HPH) [70], plasma [71] or using zeolithes adsorbents [72] to purify acid 273
hydrolysis COS and LMWC. Note to mention that electrochemical processes have also been 274
developed to efficiently depolymerize chitosan [73]. 275
4. Functional properties of chitosan276
4.1. Sedimentation and flocculation in wine industry 277

Chitin and chitosan are allowed by the Codex Alimentarius since 2003 as coaguling/clarifying 278
agents for fruit juices and nectars. Fungal chitosan extracted from Aspergillus niger is the only type of 279
chitosan allowed in winemaking, since 2009, as specified by the Oenological Codex (OIV-OENO 368-280
2009). The process from which chitosan is obtained from chitin in fungi is protected by a patent [74] 281
and it’s origin is guaranteed according to OIV-OENO 368-2009 by the three following properties: 282
residual glucans have to be lower than 2 %; viscosity in 1 % acetic acid higher that 15 Cps and the 283
settled density lower than 0.7 g/cm3. Chitosan is a flexible polymer with several functional groups 284
(amine, N-acetamide and hydroxyl), which makes it a very reactive molecule in wine. It hence has 285
numerous potential applications in oenology, and is allowed for fining must or wines (OIV-OENO 286
336A-2009 and 337A-2009) up to a maximal dose of 100 g/hL, but also treat wines to remove the 287
following contaminants (OIV-OENO 338A-2009): (i) ochratoxine A (up to a treatment limit of 500 288
g/hL) but also (ii) iron, lead, cadmium and copper (maximum dose: 100 g/hL) and finally to reduce 289
the main wine spoilage yeast populations, Brettanomyces (maximum dose: 10 g/hL) [75]. Even though 290
most chitosan is soluble in most organic acid solutions [76], it is not entirely soluble in wine. The 291
sediment formed after chitosan treatment should be removed by racking. Chitosan is described in 292
the literature as being a promising agent to fine white wine in order to reduce the protein content and 293
hence prevent the protein haze hazard, as an alternative to the commonly used bentonite [77]. In red 294
wine, chitosan can be used to clarify wines but reduces the total phenol content at high doses [78]. 295
However, given the treatment doses required and the cost of the chitosan treatment for fining, this 296
application is today poorly used. Moreover, other fining agents exist on the market even if 297
alternatives to replace bentonite (which potentially can confer metals to the wine and whose 298
organoleptic impact is not neutral) or other fining agents (such as the animal derived gelatins) are 299
needed. Likewise, chitosan is still poorly used for metal and ochratoxin A removal in wine. However, 300
alternative treatments for the replacement of the traditional ferrocyanure potassium treatment used 301
to remove cooper and iron as well as PVI/PVPP (for cooper as well as other metals) would be useful. 302
Practically, chitosan is rather widely used for its antimicrobial properties in wine and more precisely 303
to control the spoilage yeast Brettanomyces bruxellensis [79-80]. In a context where sulphur addition is 304
more and more limited and the emergence of sulphur resistant yeast populations has been showed 305
[81], the use of chitosane as a curative and preventive agent is increasing among winemakers. 306
Moreover, the 10 g/hL maximal and efficient dose to reduce these spoilage yeast populations is 307
compatible both from a practical and economical point of view. However little is known about the 308
biological reasons sustaining the anti-microbial activity of chitosan in wine and investigation still 309
need to precise the impact of chitosan on other oenological microorganisms, whether wanted or not 310
in wine. Moreover, heterogeneity of chitosane batches (deacetylation degree and molecular weight 311
for example) and large range of pH, turbidity, ethanol content and others chemicals parameters 312
encountered in wines will modulate the efficiency of chitosan treatments [82]. Strains of B. bruxellensis 313
are more or less reactive to a same chitosane batch according to chitosan concentration, level of yeast 314
population and probably others oenological parameters [79,80,83]. The efficiency of chitosan is 315
sometimes reinforced in oenological formulations by the addition other oenological products such as 316
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enzymes or fining agents. With a very active and increasing market of these formulations, it is quite 317
challenging to enumerate all the products available on the market.  318
4.2. Antimicrobial 319

Chitosan was shown to inhibit the growth of many microbial species bacteria, yeasts or other 320
fungi: pathogens, phytopathogens, and spoilage species, for food, medical or agricultural 321
applications. It displays a high antiseptic spectrum and a high activity compared to other molecules. 322
As a result, it can be used to eliminate microbial contaminants in planktonic or in biofilm form, or to 323
simply prevent their multiplication or adhesion in bioactive and antiseptic materials (to wrap foods 324
or seeds for instance to immobilize lytic enzymes, to encapsulate vaccines), in solutions to clean 325
material or teeth, to treat plants and crops, or thanks to its high biocompatibility, directly in liquid 326
foods such as fruit juices or wine (Table 2). Depending on the aim of chitosan employment, the mode 327
and duration of chitosan treatment and of the total experiment, the medium of the test and the 328
measured effects vary a lot. Minimal inhibitory or minimal lethal concentrations (MIC<MLC) are 329
often determined in liquid or solid media, inhibition diameters are also frequently measured on agar 330
plates, or biofilm prevention or elimination are tested via microplate assays or even directly on 331
medical material, microbial sedimentation (Table 2).  332

 333

Table 2. Studies on antimicrobial activity of chitosan: diversity of target microbes, test media and final aim of 334
the treatment. 335

Effect Medium/Method
Chitosan 
form or 

derivative

Microbial 
species 
targeted

References

Microbial growth 
inhibition

Liquid model 
medium (MIC)

Nanoparticles, 
many Mw/DA

Many 
species

[84-96] 

Beef slices [96] 

Beer, wine [97-99] 

Solid agar plates [84,86,95,100,101] 

medical catheter
Diverse 
viscosity

K. 
pneumoniae 

E. coli
[102] 

Liquid media
Distinct 

concentrations
microbials 

cultures
[98,103] 

metabolism modification Liquid medium
Distinct 

concentrations
S cerevisiae [104] 

Biofilm inhibition Liquid medium Nanoparticles S. aureus [84,105] 

Microbial elimination
Liquid medium, 
minimal lethal 
concentration 

many Mw/DA
many 

species
[80,86-88,90-

92,106] 

Biofilm elimination

Elimination of 
biofilms, in flow 
cells/ polystyrene 

wells

Nanoparticles
S. mutans 
S. aureus

[105,107] 

Floculation/sedimentation Liquid medium
Many 

Mw/DA
Distinct 
species

[80,90,104,108-110] 
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The type of microorganism present (yeast, bacteria, genera, species and even strain), their 336
concentration or way of life (biofilm or planktonic) will change a lot the efficient chitosan 337
concentration needed [85,90,93,110,111]. Furthermore, the origin, MW and DA of the chitosan or 338
chitosan derivatives (nanoparticles, gels or grafted chitosans) used vary a lot and the conclusions 339
drawn are sometimes conflicting. As a result, the antimicrobial mode of action of chitosan in liquid 340
media is still highly hypothetical. Microbial inhibition by chitosan may be the result of a sequence of 341
molecular mechanisms which altogether lead to cell inhibition and killing [82,89,93,112,113]. Besides, 342
some report that chitosan activity is mostly growth inhibitory and resistant subpopulations exist 343
[114]. Most studies agree to say that the cationic nature of solubilized chitosan interferes with the 344
negatively charged residues of the bacterial surface (Figure 6).  345
 346

 347
Figure 6. Inventory of the different molecular processes that may contribute to the chitosan antimicrobial activity 348
(adapted from [82]). The numbers i to vii correspond to those used in the text (see above).  349
 350
The subsequent (sometimes controversial) reported effects are: 351

(i) The formation of a physico-chemical barrier (towards oxygen for example) by adhesion to 352
the cell wall especially on Gram positive bacteria [111,115]. As a result, the microbial envelope, which 353
is known to be highly variable depending on the species and strain, particularly with bacteria, plays 354
an important role in chitosan initial activity. All the elements such as teichoic acids or external 355
polysaccharides that can be negatively charged will favor the interactions with chitosan. However, 356
the exact nature of the surface components that interact with chitosan has not been accurately defined 357
[88,106]. Species that contain chitin in their membrane would be less sensitive [85]. The membrane 358
may not be the direct target as liposomes are poorly affected by chitosan [106,116]. Proteins or 359
elements emerging from the membrane or the wall seem to be more likely recognized. However the 360
membrane composition and fluidity may influence the subsequent consequences of chitosan 361
treatment [100,116]. 362

(ii) Some studies suggest a subsequent separation of the cell wall from the cell membrane, 363
others only mention a morphological change. Interaction with membrane leads to altered cell 364
permeability and may disrupt energy generation pathways [92,112,116-123,92]. 365

(iii)  Chitosan also causes agglutination and precipitation of the undesired microorganisms 366
[109,120]. Indeed, E. coli was shown to protect itself by forming aggregates in the presence of 367
chitooligosaccharides (COS), which displayed only a bacteriostatic effect and the bacteria could 368
rapidly grow after separation from the chitosan by membrane filtration [112,124]. In others studies 369
high MW and low DD insoluble chitosan fractions were shown to act as fining agents which eliminate 370
such cells aggregates [108,109]. 371

(iv)  The diffusion of low molecular weight chitosan into the cell and its interaction with DNA, 372
RNA and proteins is also suggested to contribute to the global mechanism [125-127]. 373

+++++++++

Positively charged chitosan/COS

++++ ++

i.
Coating de cell wall (negatively
charged)  or directly the cell
membrane

ii

iii. COS induce cell agregation
and insoluble fractions act as 
fining agents

Cells with external
wall/polysaccharides

Cells with external
membrane

iii.

iv. COS may cross the walls and membranes

vi. 
Collapse of internal
membrane or total 

disruption of the two
membranes; internal

material leakage
vi. 

Wall and 
membrane 
disruption

vii. Negatively charged nutrient sequestration

v. Damage to DNA, RNA, 
proteins; stress, autolysis

v. 

i.
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(v) At sublethal doses, an induction of genes involved in stress regulation, arginine or glucose 374
metabolism (energy), protein glycosylation, membrane synthesis, ion transport, wall construction 375
and autolysis is reported [87,88,114,127-129]. S. cerevisiae cells treated with sub-lethal doses of 376
chitosan strengthen their wall and become resistant to beta-glucanase treatment [127,129]. 377

(vi)  Disruption of the membrane and release of cellular components are often reported 378
especially for Gram negative bacteria and for some yeasts [115], but depending on the dose used this 379
can be observed or not with some Gram positive bacteria such as S. aureus [69,90,91,106,117,124,130-380
133]. 381

(vii) The chelation and sequestration of metal ions and other nutrients in the broth has also been 382
proposed [130]. 383
In addition, several studies have focused on the parameters that modulate the antimicrobial activity 384
of chitosan. Figure 7 summarizes the main parameters modulating the antimicrobial activity of 385
chitosan. 386

 387
Figure 7. Parameters that modulate the antimicrobial activity of chitosan. 388

Regarding the intrinsic parameters, the chitosan MW and DA are important parameters, more than 389
the origin of the chitosan. Regarding the size of the active fractions, no consensus can be reached from 390
the literature. The optimal active MW may be species or even strain specific, and opposite results are 391
reported for various E. coli strains [86,112,124,134-137]. On the other hand, the antimicrobial activity 392
is directly proportional to DD and inversely to DA [86,87,134,138]. The activity is also modulated by 393
the culture medium composition and it is different in laboratory media and in foods [98,101,139]: 394
lipids, proteins and divalent metal cations can bind to chitosan and prevent its interaction with target 395
microbes [106]. Furthermore, Gyliene et al (2015) [140] suggest that dissolved oxygen can strongly 396
increase the antiseptic activity of chitosan. The medium turbidity should be considered also, as 397
chitosan binding to medium particles may render it inactive against microbes [96,98,101,141]. The 398
medium pH is very important and chitosan loses its activity above pH 7, because of deprotonation 399
and insolubility [86,125,132,135]. The use of chitosan derivatives such as carboxymethylchitosan, 400
gallic acid grafted chitosan or N,N,N-trimethyl chitosan enables higher antimicrobial activity at 401
higher pH [12,142-144]. The age of the microbial cultures, i.e. the physiological state of the microbes, 402
and the nature of the species present are also key elements modulating microbial sensitivity to 403
chitosan [103, 104,121,145]. Several studies mention the importance of chitosan concentration and 404
time of contact regarding the aggregation and finning effects. Microbial flocculation seems more 405
efficient with high MW and low DD chitosans, but this highly depends on the microbial species 406
present [108,109]. Racking is essential to eliminate the still alive cell aggregates [112]. For example in 407
fruit juices and drinks such as beer or wine, chitosan is added directly in the beverage. If efficient 408
racking is performed, chitosan treatment enables to eliminate undesired microbes via two distinct 409
activities: the killing one and the flocculating one [80,98,108,139]. But racking is not always performed 410
at the end of the test and the position (top, medium height, bottom or whole homogenized medium) 411
of medium sampling for microbial enumeration is not specified. This can highly change the residual 412



Appl. Sci. 2019, 8, x FOR PEER REVIEW  13 of 34 

population measured and the risk of regrowth if live but flocculated individuals are maintained in 413
the treated liquid [80,110,114]. 414

 415
4.3. Elicitation 416
As largely described in the literature, chitosan and derivatives also has applications as elicitors of 417
plant growth defensive and stimulant responses [146,147]. In general rule, the idea that plant cells 418
could release chemicals substances during pathogen aggression was issued by the scientific 419
community in the early 20th century. It was commonly referred to as phytoalexins (alkaloid, 420
flavonoids...) to designate these plant antibiotics inducing a defense response against 421
phytopathogens [146,147]. Later, these biomolecules resulting in the synthesis of phytoalexins have 422
been designated by the term "elicitors". The concept of oligosaccharins was proposed by Albersheim 423
in the 1990s to characterize oligosaccharides having an active role, called "hormone-like", in the 424
regulation of biological processes. Thus, oligosaccharides derived from plants (endogens 425
oligosaccharides: oligoxyloglucan and oligogalacturonate) or fungi (exogens oligosaccharides: oligo-426
β-glucan and oligochitin) were widely described as active biological regulators at nanomolar 427
concentrations, on mechanisms such as growth, cell development, symbiosis and defense reactions 428
[148,149]. During the aggression stage of a plant by a phytopathogen, different eliciting signals are 429
emitted by both partners. First, in the early stages, oligogalacturonates, resulting from pectocellulosic 430
wall degradation with fungal pectinase activities, set off acquired systemic resistance (ASR) in plants 431
[150,151]. Several major components [152] can be distinguished to account for observed behaviors: 432
(1) interaction with pecto-cellulosic walls of the host, (2) induction of phytoalexins, (3) specificity, (4) 433
hypersensitivity, (5) the action of toxins, (6) the effect of ethylene and (7) the induction of 434
pathogenesis-related proteins. Thus, ASR begins when all the different signals are perceived by a 435
specific plant cell membrane receptor. Consequently, the plant then activates its natural defenses 436
such as the production of chitinases and -(1,3)-glucanases, which will degrade the parietal 437
constituents of the fungus to generate oligochitin and oligo-β-(1,3)-glucan [153]. Apart from all these 438
oligo-β-(1,3)-glucan, oligochitins ( -(1,4)-N-acetyl-oligoglucosamines) and their deacetylated analogs 439
(oligochitosans) are involved in the defense processes in many plant species such as wheat (Tricicum) 440
and rice (Oryza sativa) [154,155]. The heptaoligochitin (DP 7) and octaoligochitin (DP 8) structures 441
were found to be the most active elicitors [154,155]. In the Table 3 some examples of chitosan and 442
oligochitin/oligochitosans elicitors derivatives are summarized. 443
 444

Table 3. Oligochitin/oligochitosan as biostimulator and elicitor of plants defenses. 445
Plants Effects References 
Rice Induction of phytoalexin [154] 

Wheat Increase phenolic compounds [155,160] 
Pea phytoalexin production [156] 

Tomato Proteinase inhibitor synthesis [157] 
Soybean Synthesis of callose [158] 
Parsley Synthesis of callose [159] 
Potato Enhance tuber size [161] 

Strawberry Increase fruits yields [161] 
Barley Increase phenolic compounds [161] 
Maize Increase seed weight [161] 
Rape Increase chlorophyll [161] 
Basil Increase phenolic compounds [161] 

 446
Oligochitosan also exhibit activity on pea (Pisum sativum) and tomato (Solanum lycopersicum) leaves 447
defenses, but at concentrations higher than those described for N-acetylated forms (oligochitins) 448
[156,157]. Some other oligochitosans fractions were described to induce: (i) the synthesis of callose 449
which is a -(1,3)-glucans during the defense responses of plants such as parsley (Petroselinum 450
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crispum) and soybean (Glycine max) [158,159] and (ii) lignin deposition and phenolic acid increasing 451
in leave of wheat [160]. More, chitosan and oligochitosans were also shown to stimulate positive plant 452
effects on Potato (Solanum tuberosum L.), Strawberry (Fragaria ananassa Duch.), Basil (Ocimum ciliatum), 453
Rape (Brassica rapa L.), Maize (Zea mays L.) and Barley (Hordeum vulgare L.) [161]. As generally 454
speaking, these elicitor activities from oligochitins/oligochitosans seem to be essentially modulated 455
by ionic interactions between these polycationic derivatives and the negatively charged compounds 456
of the plant membrane such as phospholipids [146,147].  457
More, oligochitins/oligochitosans and their derivatives have also been extensively described as 458
molecular messengers strongly involved in establishing the symbiosis between Rhizobia and 459
legumes. Indeed, the Nodulation Factors (Nod Factors) are bacterial glycolipids involved in the 460
formation of atmospheric nitrogen (N2) fixing nodules on the roots of legumes. Some Nod factors 461
have already been purified from culture supernatants of mutant S. meliloti strains [162]. All Nod 462
factors produced by rhizobia have a main chain consisting of several -(1 4)-linked N-acetyl-D-463
glucosamine residues (most commonly 4 to 5 residues). In S. meliloti, the Nod factor is a -(1 4)-linked 464
D-GlcNAc tetrasaccharide. C-6 of the reducing end is sulfated. The absence of this sulfate group 465
causes the loss of activity of this Nod factor vis-à-vis alfalfa. Three of the four amine functions are 466
substituted with acetates and one is substituted with a bi-unsaturated C-16 fatty acid (Figure 8). So 467
we can usually talk about Lipo-ChitoOligosaccharide (LCO). 468
  469

 470
 471

Figure 8. Structure of lipo-chitooligosaccharides produced by EJ355 strain from S. meliloti [162]. 472
Many other Nod factors were subsequently isolated; they differ in the number of glucosamine 473
residues or the presence of a more unsaturated and / or longer chain of fatty acids, or by different 474
carbohydrate substitutions [163-165]. This work makes it possible to highlight the high level of 475
specificity and recognition of oligosaccharides by the plant cell. All of these Nod factors are produced 476
in response to secreted biological inducers by the roots of some plants. Nod factors play a critical role 477
in the ability of rhizobia to induce root nodules and many other infection-related responses in the 478
host plant, at concentrations in the order of 10-7-10-11M [166,167]. In fact, at low concentrations, the 479
LCOs induce deformation of the plant's absorbent hairs, whereas at high concentrations they induce 480
the division of the cells of the plant's internal cortex, thus allowing the formation of the nodule [167, 481
168]. 482
 483
4.3. Biomedical and pharmaceutical 484

Regarding the previous section, chitosan is a unique cationic biocompatible and biodegradable 485
polysaccharide (see section 5) that can be modified, as wish, according to the needed end-use 486
application. This is particularly true for biomedical and pharmaceutical applications ranging from 487
drug delivery system [169] to functional biomaterials [170], considering also tissue engineering [171], 488
cell culturing [172], regenerative scaffolds [173], wound healing [174], smart hydrogels [175], active 489
nanoparticles [176], anticoagulant [177], gene therapy [178], etc. (Figure 9). This list is obviously non 490
exhaustive regarding a short search on Scopus with more than 120 recent document results with 491
“biomedical” AND “pharmaceutical” AND “chitosan” AND “derivative” keywords.  492

 493
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 494

Figure 9. Various applications of chitosan and derivatives in biomedical and pharmaceutical fields. 495
 496
 497

Very recently, Mittal et al. [179] published a deep and comprehensive review that scientist 498
readers should adress to fully understand the recent progress of chitosan chemistry for a use in 499
biomedical fields, as well as the paper of Laroche et al. [4] which highlighted the need of integral 500
approach to comprehend all the potential of chitosan and its derivatives. Additionnaly, Khan et al. 501
[180] detailed in their review the implications of molecular diversity of chitin, chitosan and some 502
derivatives. The authors suggested the strong potential of chitosan-based nanomaterials to enhance 503
nanobiotechnology in the future. Phil et al. [181] gave an emphasis on various biological activities of 504
chitooligosaccharides (COS). COS with low DP (< 20) seemed to be the most prefered bases for 505
prospecting biomedical properties due to their excellent solubility, absorbability and capacity to cross 506
physiological barriers [182]. Additional lipophilic groups were described to greatly increase 507
biocompatibilty [183]. COS and associated derivatives were reported for their uses in DNA/drug 508
delivery system [184], tissue regeneration [182], anticancer/antitumor [185], anti-HIV(1) [186], anti-509
hypertensive [185] or Alzheimer’s disease [187]. N,N,N-trimethyl chitosan (TMC) was reported as a 510
quaternized hydriophilic derivative for assembling new pharmacaeutical nano-structures [187] but 511
also for applications in tissue engineering [188]. These authors prepared a multifunctional 512
nanohybrid scaffold able, on one hand, to in vitro load/release bioactive molecules (e.g. LMW heparin) 513
and on the other hand to play the role of platform for proliferation of soft tissue, extracellular matrix 514
and specific cells involved in adipogenesis. Beside, some authors developed with TMC derivative 515
new nanoparticulate formulations, such as Sheng et al. [189] who loaded LMW protamine on TMC-516
coated nanoparticles for oral administration. This formulation clearly allowed an increase of 517
intestinal permeability and efficient effects on intestinal mucus layer. As another example, TMC 518
micelles can be prepared to overcome subasorption and solulibitly problems of specific active 519
molecules such as insoluble alkaloid, osthole, etc. [190,191]. The use of nanoparticles is not new and 520
papers deal today with specific derivatives such as carboxymethyl chitosan (CMCS), which are 521
soluble in both acidic and alkaline solutions, for designing nanotechnology-bases systems based on 522
stimulus-based, diffusion, swelling or erosion-controlled release [192]. Beside, Hakimi et al. [193] 523
recently showed the potential of thiolated methylated dimethylaminobenzyl chitosan as delivery 524
vehicle. This statement was validated on Human Embryonic Kidney cells (Hek293) and the results 525
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revealed here again an improvement of solubility, disponibility and no significant cytotoxicity. Cross-526
linking reactions between chitosan, COS or chitosan derivatives with other polymers, synthetic 527
and/or natural oligo- or polymers open the way to unlimited applications, as reported by many 528
authors, with recent examples, for pectin [194], poly-γ-glutamic acid (γ-PGA) [195], Poly(ethylene 529
glycol) (PEG) and cyclodextrin [196,197], C-phycocyanin [198] or Poly(acrylamide-co-acrylic acid) 530
[199]. Finally, chitosan users interested in biomedical and pharmaceutical applications should keep 531
in mind that the possibilities of design are unlimited, obviously maintaining the essential 532
physicochemical, biocompatibility, biodegradability and biosolubility properties (in particular in 533
vivo). 534

 535
4.4. Adhesive 536

Chitosan is an interested candidate for adhesive applications, especially in wood field. Chitosan 537
has various deacetylation degrees (DD) and a large spectrum of molecular weights (Mw). It has been 538
reported that its adhesive properties increase when DD and Mw increase [200,201]. The mechanisms 539
of adhesion are multiple [1,202]. However, the surface tension and the viscosity of the liquid adhesive 540
are important because they influence the interlocking mechanisms and modify the interactions with 541
the adherent. First, viscosity of chitosan solution increases with concentration. For example, viscosity 542
is of 90.2 Pa.s for chitosan solution of 4% (w/v) and increases to 7132 Pa.s for a solution of 9 % (w/v) 543
[203]. Surface tension needs to be low to easily spread out upon all type of adherent materials. Surface 544
tension is around of 38 mN.m-1 for 2 % (w/v) chitosan concentration in 1 at 2 % (v/v) acetic acid [204]. 545
Kutnar et al. [205] estimated that surface tension of viscoelastic thermal compressed wood is ranged 546
between 28.6 and 35.5 mN.m-1. Chain link analogy for an adhesive bond in wood was proposed by 547
Marra [206]. He considered a succession of links between adhesive and wood especially in the 548
interface between the boundary layer and the wood structure. This interface constitutes the adhesion 549
mechanisms: mechanical interlocking, covalent bounding and secondary chemical bounds due to the 550
electrostatic forces through the adhesive penetration in wood cells (Figure 10). The penetration of 551
chitosan solutions into wood or porous biosourced materials is discussed by Patel et al. [207] and 552
Mati-Baouche et al. [208]. No penetration is observed respectively into wood [207] and into sunflower 553
[208].  554

 555
 556

 557

Figure 10. Schematic representation of the interfacial zone between adhesive and wood. 1: adhesive 558
boundary layer, 2: interface between boundary layer and wood substrate which constitutes the 559

adhesion mechanism (mechanical interlocking, covalent bonding ou secondary chemical bonds, 3: 560
adhesive penetration zone. 561

 562
But for water based adhesive, water is adsorbed by the wood cell wall and the high molecular 563

weight polymer molecules are trapped bit the pit membrane [209]. For Pizzi et al., secondary forces 564
appear to be the dominated mechanism for bonding wood [210]. Chitosan carries polar and H-565
bonding functional groups. At acidic pH, positively charged chitosan in wet condition interacts more 566
strongly with negative charged surface via electrostatic forces, H-bonds and van der Waal’s forces 567



Appl. Sci. 2019, 8, x FOR PEER REVIEW  17 of 34 

between glucosamine and hydrated surface of adherend [7]. The bonding strength of chitosan was 568
evaluated on three plywood veneer sheets with various amounts of chitosan before and after water 569
immersion treatment [211]. Water treatment consisted on immersion during 3 h at 30 °C. Specimens 570
were cooling in water and tested in the wet condition. The dry bond strength increased with 571
increasing chitosan to 16 g.m-2 and decreases slightly. Before water immersion, the optimum bond 572
strength was 2.13 MPa for 16 g.m-2 chitosan and after immersion, the maximum value of the bond 573
strength was 1.7 MPa in the condition of 32 g.m-2. Umemura et al. [212] shown that the dry bond 574
strength of chitosan is in the range 1.1 MPa – 1.6 MPa for Mw varying between 35 000 and 350 000 575
Daltons. With glucose addition (70 wt%), the bond strength increased to 1.75 MPa for low molecular 576
weights chitosans. In contrast, the bond strength tended to decrease at greater amounts of added 577
glucose for high molecular weight chitosan. Maillard reaction in above formulation formed brownish 578
melanoidins which occurred between COOH of glucose and NH2 of chitosan that was improved 579
adhesive properties of glucose cross-linked low molecular weight chitosan. Patel et al. [207] evaluated 580
the potential of chitosan as wood adhesive using a double lap shear test. Three formulations were 581
tested: chitosan 4 % (w/v), chitosan 6 % (w/v) and a formulation chitosan 6 % (w/v), glycerol 1 % (v/v) 582
and trisodium citrate dihydrate 5 mmol.L-1. Dry bond strength were respectively 4.2, 6.1 and 6.0 MPa. 583
Paiva et al. [213] obtained the same results concerned the influence of the concentration of chitosan 584
on cork adhesive performances. They mixed chitosan with oxidized xanthan gum to increase the 585
adhesive power. Combination of oxidized xanthan gum with chitosan had the potential to improve 586
the adhesion properties due to crosslinking of the aldehydes with the amino groups to form an imine 587
linkage. To reduce water affinity and to improve mechanical properties of chitosan, hydrophilic 588
material such as stark can be incorporated. It forms intermolecular hydrogen bonds between the 589
amino and hydroxyl groups of chitosan and the hydroxyl groups of starch [214]. Chitosan is a basic 590
linear polysaccharide. Its performances can be improved with the chemical cross-linking technique. 591
For example, glutaralhedyde converts chitosan into a network structure for medium-density 592
fiberboard applications [215]. Others authors proposed to formulate chitosan with konjar 593
glucomannan [211] or lignin [216]. Chitosan can be used as adhesive with others materials, for metal 594
for example. Patel et al. [217] tested chitosan adhesive with aluminum adherents using double-lap 595
shear configuration. They studied different surface treatments and they shown that aluminum 596
adherents chemically treated by NaOH presented the best bonding strength. Formulated with 597
glycerol (1 % v/v) as plasticizer, chitosan (7 % w/v) in 2 % (v/v) acetic acid obtained a maximum shear 598
strength of 40.8 MPa. 599

 600
4.5. Others 601

Chitosan is a versatile polysaccharide with many different other applications, some of the most 602
important ones are detailed below. Owing to his chemical properties earlier described, chitosan is 603
also a promising adsorbent easily modifiable (by grafting, cross-linking, functionalization or coating). 604
Due to its unique polycationic behavior, chitosan can strongly interact with negatively charged 605
molecules or ions. These adsorption and chelation properties are pH dependant and also depend on 606
chitosan molecular weight and acetylation degree. These characteristics make chitosan a polymer of 607
choice of fighting water pollution and control the quality of water effluents and notably attract metal 608
ions such as copper, zinc, lead or cadmium [218]. Coagulation and flocculation properties of chitosan 609
are also crucial in wastewater treatment plants [219] to reduce chemical oxygen demand (COD), 610
chlorides, turbidity and proteins [220]. In order to enhance absorptive properties of chitosan for 611
metals and organic textiles dyes many types of derivatives emerged, non exhaustically: zeolites, 612
EDTA or montmorillonite. Chitosan is also more and more used in the creation of innovative 613
packaging and material science owing to its remarkable barrier properties especially against water 614
vapor and low permeability to oxygen [221]. These properties help to maintain product quality by 615
keeping it away from oxidation or moisture. The same study showed an important resistance to UV 616
light of chitosan when modified with adequate amount of glycerol. Paper industry is using chitosan 617
film as a paper finisher to improve paper strength to moisture. Due to its non toxicity and 618
biocompatibility, this polysaccharide has also numerous food applications by providing texturing, 619
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gelling and foaming agents and helping the stabilization of emulsions. Chitosan is also a super 620
efficient lipid binder and can be used in supplemented food for obesity or dietary destination [218]. 621
In agriculture, it is used for seed coating and can act as a frost protective [220]. Finally promising 622
solid state batteries including modified chitosan has been reported by some authors [219,221]. 623

 624
5. Biodegradability of chitosan derivatives and Life Cycle Assessment (LCA) 625

Since last decade, the biodegradability of chitosan has been extensively studied, notably for the 626
production of COS which present varying bioactivities and numerous potential applications in food, 627
agriculture, biomedicine, pharmaceutics and cosmetics [222,223]. The combination of chemical (e.g. 628
acidic depolymerization) and physical processes constitute the well-known way of producing COS 629
[224-226], but these treatments nevertheless yield poorly defined oligosaccharide combinations 630
varying in their DP, pattern of acetylation (PA) and fraction of acetylation (FA). Alternatively, the 631
chitosan depolymerization using enzymatic hydrolysis seems to be more relevant for COS 632
production since it involves a more gentle and controlled procedure (pH, Temperature), leading to a 633
better control of molecular weight distribution of COS [227] and the generation of more defined 634
products [228,229]. However, as the efficiency of enzymatic hydrolysis of chitosan remains 635
dependent on PA and FA, the chemical states of chitosan used as substrate may influence the 636
composition of enzymatic products [230,231].  637

Chitosan has been reported to be susceptible to numerous enzymes, including specific 638
(chitosanases, E.C.3.2.1.132; chitinases, E.C.3.2.1.14) and non-specific (glycosidase, lipase, proteases, 639
etc.) chitosan hydrolyzing enzymes [232]. Non-specific chitosanolytic enzymes belong to 640
heterogeneous enzyme families such as cellulase [233], amylase [234], pectinase [235], papain [236], 641
lysozyme [237,238] or lipases [239] (Table 4). Although chitinases and chitosanases are very effective, 642
the utilization of non-specific enzyme is more suitable for low-cost production of COS [241]. Among 643
non-specific enzymes, cellulases showing bifunctional activities (cellulase-chitosanase) have been 644
well documented and were isolated from various organisms such as Bacillus sp., Trichoderma sp. and 645
Lysobacter sp. [240, 242-245]. With activities and reaction conditions varying according to the sources, 646
some cellulase lead, by an endo-type cleavage, to final hydrolysis products distributed from dimers 647
to tetramers [233]. Chitosanolytic activity associated to bifunctional cellulase may represent 15-40% 648
of cellulase activity [242] and be enhanced with increasing deacetylation degree [246-247]. 649
Furthermore, chitosanases are generally recognized as enzymes degrading specifically chitosan but 650
not chitin and have been classified in three subclasses according to the nature of the cleavage 651
positions: GlcN-GlcN and GlcNAc for subclass I, GlcN-GlcN for subclass II, and GlcN-GlcNAc for 652
subclass III [228]. These enzymes, belonging to five Glycoside hydrolase families (GH-5, -8, -46, -75 653
and -80) degrade chitosan via endo-type mechanism. However, new enzymes with exochitosanase 654
activity have been reported, notably exo-β-D-glucosaminidase able to cleave chitosan from non-655
reducing termini, releasing GlcN residues [257, 258]. Recently, the identification of carbohydrate 656
binding domain (CBM) for some chitosanases may suggest additional interaction with chitosan 657
polymer, involving to a different mode of chitosan hydrolysis [259,260]. The chitosanases actually 658
described are issued from a large number of organisms including, bacteria, cyanobacteria, fungi and 659
plants [228]. Although the performance of chitosanases on chitosan depolymerization is largely 660
dependent on enzyme sources and reaction conditions, it has the advantage to design selected 661
enzyme mixture to generate the controlled production of COS with selected DP or perform the 662
complete chitosan hydrolysis to GlcN free [228, 254]. On the other hand, the biodegradation of 663
chitosan derivatives relative to chemically modified or grafted-chitosan copolymers was also 664
investigated using enzymatic hydrolysis, as for example for C6-oxidized chitosan [138], chitosan 665
phenolic [261], chitosan hyaluronan [237] or chitosan alginate [262]. As example, commercialized 666
enzymes mixture (Glucanex®, Macerozyme R-10) and crude extract from T. reesei IHEM 4122 have 667
shown the best performance for C6-oxidized chitosan degradation with final hydrolysis yields 668
ranging from 12.9 to 36,4 % (w/w) [260]. In summary, the biodegradation of chitosan and derivatives 669
has been proved efficient thanks mainly to the availability of large panel of enzymes. 670
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Table 4. Non-exhaustive list of enzymes biodegrading chitosan. 671

 672
 673

Enzyme 

/microorganism 

Mode of action on 

chitosan 

Distribution of reaction 

products 

Substrate specificity References 

Cellulase     

Bacillus cereus D-

11 

GlcN-GlcNAc, 

GlcNAc-GlcN, GlcN-

GlcN 

Chitobiose, chitotriose and 

chitobiose 

CMC, chitosan [240] 

Bacillus sp. 65 GlcN-GlcN ND CMC, chitosan [244] 

Bacillus cereus S1 GlcN-GlcN Dimer, trimer and tetramer CMC, Colloidal and 

soluble chitosan 

[245] 

Lysobacter sp. IB-

9374 

Endo-type cleavage Chitobiose, chitotriose, 

chitotetraose 

CMC, Colloidal 

chitosan, chitosan, 

glycol chitosan 

[242] 

Trichoderma reesei GlcN-GlcN Oligomers CMC, avcel, chitosan [247] 

Trichoderma viride GlcN-GlcNAc, 

GlcNAc-GlcN, GlcN-

GlcN cleavage from 

the non-reducing end 

Oligomers CMC, chitosan [233] 

Chitosanase     

Bacillus circulans 

WL-12 

GlcN-GlcN, GlcN-

GlcNAc 

(GlcN)2, (GlcN)3, (GlcN)4, 

oligomers 

Lichenan, colloidal 

chitosan 

[267] 

Bacillus subitilis 

str168 

NA (GlcN)2 to (GlcN)6 Low weight chitosan [269] 

Amycolatopsis 

orientalis 

Exo-type chitosanase 

(Exo-β-D-

glucosaminidase) 

NA Chitosan [258] 

Chitinase Ramdom hydrolysis 

GlcNAc 

Oligomers Chitosan [270] 

Lipase NA Mainly (GlcN)2 to (GlcN)6, 

complete hydrolysis (GlcM) 

when increasing reaction time 

Chitosan [239] 

Papain GlcN-GlcN, GlcN-

GlcNAc 

GlcN, (GlcN)3, (GlcN)4 in soluble 

fraction, and oligomers in 

insoluble fraction 

Chitosan [236] 

Pectinase     

Aspergillus niger NA Dimer to hexamer with 

predominance of dimer, 

oligomers 

Chitosan [235,268] 

Lysozyme GlcNAc-GlcNAc NA Chitosan film [237,238] 

NA: Data not available, CMC: Carboxymethylcellulose. 
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Today, many studies focus on the improvement of these enzymes by genetic engineering, or the 674
use of microorganisms producing chitosanolytic enzymes for degrading in situ chitosan bio-based 675
products, notably in an environmental and medical (chitosan-based systems used for drugs release) 676
applications.  677

The benefits of chitosan by its large availability, low-cost, biocompatibility and biodegradability 678
make it attractive for industrial processing in a context of multiple applications (bio-based material 679
and adhesives, tissue engineering, …) [263]. In the actual initiative of the establishment of ecological 680
impact in industrial processes development, studies of life cycle assessment (LCA) for chitosan 681
utilization (from the extraction to the manufacturing product) have emerged for last year. However, 682
these studies remain restricted to few applications. As example, Leceta et al. [264,265] has launched 683
LCA study to estimate the impact of manufacturing chitosan from waste crustacean to bio-based film. 684
A comparative analysis with propylene-based films (PBF) allowed demonstrating that PBF had 685
significant disadvantages associated to the polluting nature, the consumption of higher energy and 686
the release of carcinogen products. In support of these data, a schematic diagram of life cycle for the 687
chitosan-based adhesive was proposed by Mati-Baouche et al. [1], including the presentation of the 688
main steps leading to the production of chitosan-based adhesive from crustacean waste. In a different 689
context, after demonstrating the potential of grafting phenol and catechin on chitosan polymer to 690
generate functionalized biopolymer, the relative impact of the chitosan derivatives was compared 691
with other water-soluble polymers using the framework of LCA [266]. In conclusion, the life cycle 692
assessment constitutes an indispensable approach to generate important data on chitosan 693
manufacturing environmental impacts and may contribute to strengthen the stimulation/interest of 694
industrial sector for the chitosan processing development. 695

 696
 697

6. Conclusion 698
Chitosan and their derivatives are bio-based, biodegradable and biocompatible polysaccharide 699

having specific physico-chemical properties that can be exploited in numerous applications fields. 700
Indeed, they can be considered as a backbone rich in –OH and –NH2 groups available for chemical 701
reticulation and/modifications with the objective to give to them specific functional properties. The 702
chemical modifications of chitosan are the main way to increase its solubility in aqueous solutions or 703
organic solvents, leading afterwards to the formation of chitosan-based materials. In this context 704
recent research has focused on the use of this non-toxic linear polysaccharide on this native or 705
modified forms for several applications in food area (dietary ingredients, food preservative and/or 706
techno-functional agent), biomedical applications (wound healing, gene delivery, tissue engineering, 707
scaffold and hydrogels, pharmaceutical excipient), waste treatment (adsorption of heavy metal, 708
coagulation of pollutants and bactericide agent), agriculture (elicitor of plant defense reactions), 709
adhesive (wound bonding) and biotechnology (cells and enzymes immobilization). The major part 710
of these applications is real, and products are currently on the market. However, in a next future, 711
their development at large scale should consider the availability of commercial chitosan sources 712
which is constrained and limited by the volumes of raw materials for its production at industrial 713
scale. In this context, the development of new chitosan producing chains exploring new and easily 714
accessible sources of chitin appeared as fundamental to increase the volumes of production and 715
propose to the market low-cost chitosan. These new sources of chitosan, as the traditional ones, 716
should be treated by innovative and ecological processes to avoid the use of strong acids and bases 717
which are very hazardous for environment but also to limit the water consumption. For that 718
biological treatments of chitin and chitosan with enzymes (proteases or chitin deacetylase) or 719
microorganism producing them offer an alternative to traditional treatments combined or not with 720
new technology (microwave for example) replacing the conventional deacetylation at high 721
temperature. The actual research of new sources of proteins, exploring notably the large-scale 722
production of insects and microalgae could generate new chitin-rich by-products available for the 723
industrial community to produce more sustainable and low-cost chitosan. 724
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